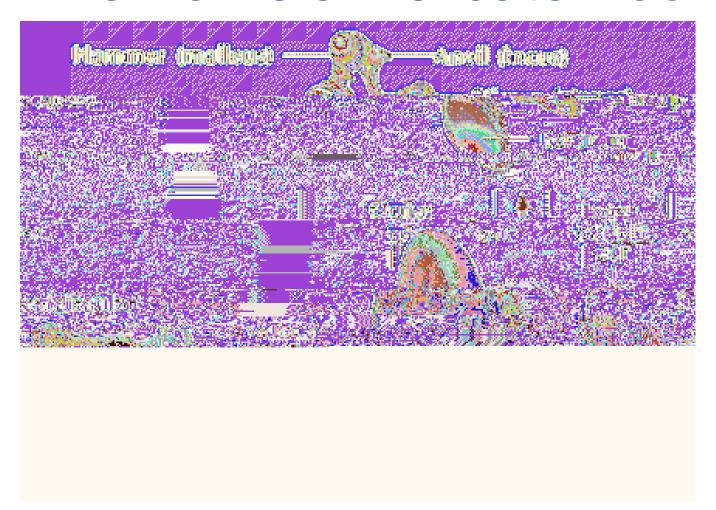


Occupational Noise Exposure 29 CFR 1910.95

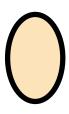
Is There a Problem?

- More than 30 million Americans are exposed to hazardous sound levels on a regular basis
- 10 million have suffered irreversible noise induced hearing loss
- Rate of hearing loss is increasing in the U.S.


Good Hearing is Important

- Work sites can be dangerous
- What sound on a worksite alerts you to danger?
 - back up alarms
 - vehicle traffic
 - changes in equipment noise
 - verbal warnings from other workers

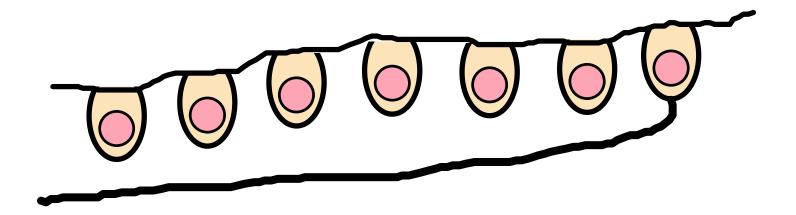
The Ear is a Delicate Tool

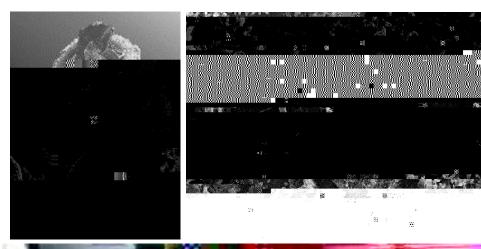

SENSORI-NEURAL HEARING LOSS

Noise-induced hearing loss

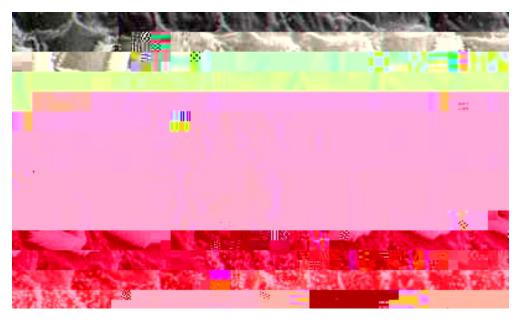
Damages the hair cells or auditory nerves

If the noise is stopped hair cells can bounce back


Damage can be temporary


SENSORI-NEURAL HEARING LOSS

If the noise continues hair cells can't bounce back Damage can be permanent!


Inner Ear

- Cochlea
 - inside are nerve cells called hair cells
 - fragile
- Continuous noise
 - above 90 dBA
 - as bad for hair cells as continuous foot traffic is to grass

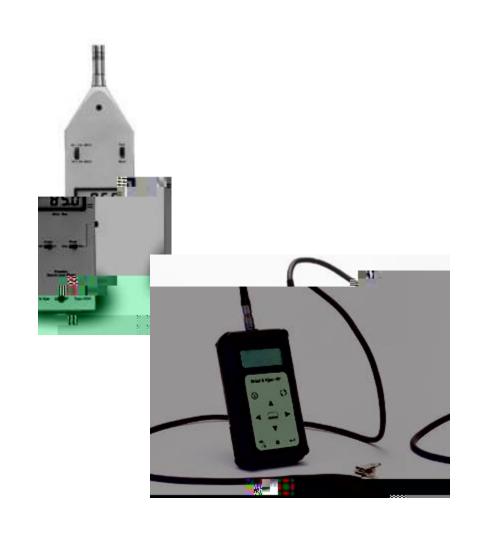
This is your ear.

This is your ear on noise.

Any Questions?

What is Noise?

- Noise is a physical energy that moves through the air like ripples in a pond
 - noise is directional
 - noise will bounce off walls and other objects


Two Components of Noise

- Frequency
 - perceived as "pitch"
 - measured in hertz (Hz)
 - human ear most sensitive in the 1,000 to 4,000 range
 - speech frequency ranges

- Intensity

How is Noise Measured?

- Sound level meter
 - instant noise readings
 - generally A scale used
 - mimics the human ear
- Noise dosimeter
 - measure a workers
 noise exposure over a shift
 - daily dose of noise
 - very accurate

Units of Measurement for Noise

Decibel dB

- little increases on the decibel scale make a big difference
 - a 6 decibel increase in noise is equal to doubling the intensity or loudness of the noise
- Ear protection needed
 - noise above 90 dBA
 - recommended at 85 dBA

Examples of Noise Levels

Noisy Hobbies

- Guns
 - large caliber short

Noise In The Workplace

Examples at Work

- lawn mower 95 dBA
- Leaf blower 110 dBA
- Chainsaw 115 dBA
- power actuated nail gun 94 117 dBA
- pneumatic hand held grinder 101 dBA
- air hammer 105 130 dBA
- snowplow 87 97 dBA
- portable saw 105 dBA
- air wrench -107 dBA
- arc welder 116 dBA

Communication In Noisy Environments

- Hard to hear someone talking in noisy environments
 - the speaker needs to be louder than background noise
- Radios or cell phones will need to be turned up
 - if you have a hearing loss, it will be harder to distinguish speech in this environment

How Do You Know You Are Exposed to Damaging Noise

Feel the need to shout in order to be heard 3 feet away

How Much Noise Can You Be Exposed To?

OSHA rules

What is a TWA?

- This is a daily "dose" of noise not a single exposure to a noisy piece of equipment
- Your daily dose of noise (TWA) is a function of:
 - how loud the equipment is (intensity)
 - how close you are to the noise
 - how long you are exposed to the noise

Main Causes of Hearing Loss

- Heredity
- Infections
- Acustic trauma
- Prescription drugs
- Presbycusis

Types of Hearing Loss

- 2 Basic Types of Hearing Loss
 - Conductive
 - A hearing problem involving the outer ear or middle ear
 - Sensori-neural
 - A hearing problem involving the inner ear
- Mixed hearing loss
 - A problem involving the outer, middle and inner ear is a mixed hearing loss

Conductive Hearing Loss

Causes:

middle ear infections,

collection of fluid in the middle ear

blockage of the outer ear (by wax),

damage to the eardrum by infection or trauma,

otosclerosis, a condition in which the ossicles of the middle ear become immobile because of growth of the surrounding bone,

rarely, rheumatoid arthritis affects the joints between the ossicles.

Sensori-neural Hearing Loss

Sensori-neural hearing loss:

age-related hearing loss,

Tinnitus

- Hearing loss may not be silent
 - Persistent (often or all the time)
 - Ringing, roaring, clicking or hissing sound
 - 12 million Americans have Tinnitus
 - should be evaluated by a Dr.
 - smoking, alcohol & IBTe by a Dr.

In Addition to Hearing Loss....

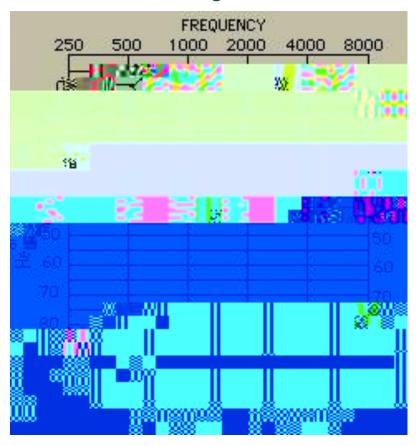
- Exposure to noise can....
 - Cause increased fatigue
 - headaches
 - increase the heart rate and blood pressure
 - cause muscles to become tense
 - cause indigestion
 - can lead to impaired balance
 - make it more difficult to hear audible warning devices

Noise Induced Hearing Loss

Entirely preventable

Audiometric (Hearing) Testing

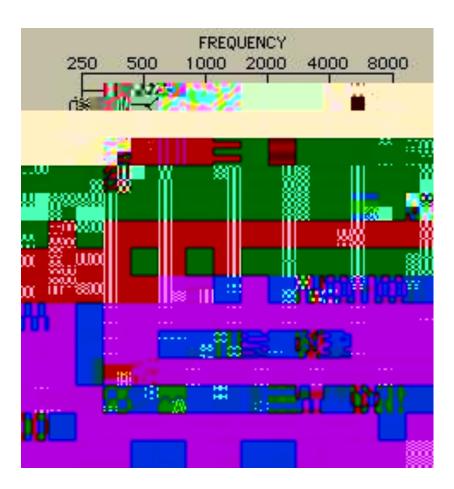
- Required annually for those employees enrolled in a hearing conservation program
 - identifies anyone with a change in hearing
 - this is just a "screening test" and should not be used to diagnose the type or extent of hearing loss
 - testing helps determine the effectiveness of an employers hearing conservation program



Audiograms

Computer generated "tape" showing normal hearing

Computer generated graph of normal hearing



Degrees of Hearing Loss

• Normal 10 - 25 dB

• Mild 30 - 45 dB

Example of hearing loss

- Have you had a STS?
 - an average shift of greater than or equal to 10 dB at 2000, 3000, 4000 Hz
 - calculated by
 - comparing your baseline test with your present hearing

Poor Hearing Test Results?

The following can result in a bad test result:

- exposure to noise without hearing protection before the test
- failure to follow the technicians instructions
- fatigue
- substance abuse
- Tinnitus
- pseudohypacusis (faking it)

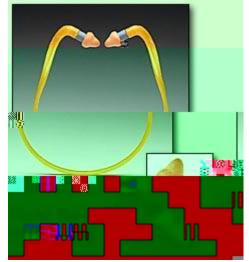
Prevention of Further Hearing Loss at Work

- Identify noise hazardous equipment
- Put distance between you and the noise source
- Limit the amount of time you are exposed
- Modify the noise source so it is quieter
- Use hearing protection when around loud noise

PREVENTION

PREVENTION:

Limit the amount of time you are exposed:


- Schedule noise activities for fewest workers needed for the job
- Take breaks away from the noise hazardous area
- Limit the amount of time employees are exposed to noise

PREVENTION

HPD used - canal caps & ear muffs

Canal Caps

Ear Muffs

Noise Reduction Rating

- All hearing protection devices have a NRR assigned
- NRR's do not accurately reflect attenuation in the real world
- Field testing indicates......
 - NRR is approximately half of what is listed for earplugs
 - NRR is approximately 75% of what is listed for earmuffs

NRR's - Good Rule of Thumb

Take the NRR on the package and divide

NRR the myth

Bigger is not necessary better

Large NRR may not be appropriate if

•

Flat Attenuating Devices

Good for

- noise exposuresaveraging 85 95dBA as a TWA
- environments were
 the spoken word
 needs to be heard
- those employees with a hearing impairment

EAR UltraTech

Hearing Aids are not hearing protection

- Hearing aids do not block out enough sound for most occupational exposures to noise
- When hearing aid users are exposed to harmful levels of noise they should
 - remove their hearing aids and use hearing protection or
 - turn off their hearing aids and put ear muffs on over them

The bottom line.....

- Your ears are a delicate tool if your working with broken equipment you need to address your exposure by...
 - getting further evaluation from an audiologist; otogaryngologist; physician
 - choosing hearing protection that is right for you
 - asking for your employers help in evaluating your working environment and making changes to reduce your exposure

